高考數(shù)學 | 解析7大專題,復習事半功倍!
2018-11-06 20:58:08學科網(wǎng)
專題1:函數(shù)與不等式,以函數(shù)為主線,不等式和函數(shù)綜合題型是考點
函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性,奇偶性,周期性,對稱性。這些性質(zhì)通常會綜合起來一起考察,并且有時會考察具體函數(shù)的這些性質(zhì),有時會考察抽象函數(shù)的這些性質(zhì)。
一元二次函數(shù):一元二次函數(shù)是貫穿中學階段的一大函數(shù),初中階段主要對它的一些基礎性質(zhì)進行了了解,高中階段更多的是將它與導數(shù)進行銜接,根據(jù)拋物線的開口方向,與x軸的交點位置,進而討論與定義域在x軸上的擺放順序,這樣可以判斷導數(shù)的正負,最終達到求出單調(diào)區(qū)間的目的,求出極值及最值。
不等式:這一類問題常常出現(xiàn)在恒成立,或存在性問題中,其實質(zhì)是求函數(shù)的最值。當然關于不等式的解法,均值不等式,這些不等式的基礎知識點需掌握,還有一類較難的綜合性問題為不等式與數(shù)列的結合問題,掌握幾種不等式的放縮技巧是非常必要的。
專題2:數(shù)列
以等差等比數(shù)列為載體,考察等差等比數(shù)列的通項公式,求和公式,通項公式和求和公式的關系,求通項公式的幾種常用方法,求前n項和的幾種常用方法,這些知識點需要掌握。
專題3:三角函數(shù),平面向量,解三角形
三角函數(shù)是每年必考的知識點,難度較小,選擇,填空,解答題中都有涉及,有時候考察三角函數(shù)的公式之間的互相轉化,進而求單調(diào)區(qū)間或值域;有時候考察三角函數(shù)與解三角形,向量的綜合性問題,當然正弦,余弦定理是很好的工具。向量可以很好得實現(xiàn)數(shù)與形的轉化,是一個很重要的知識銜接點,它還可以和數(shù)學的一大難點解析幾何整合。
專題4:立體幾何
立體幾何中,三視圖是每年必考點,主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考察建立空間直角坐標系,通過向量這一手段求空間距離,線面角,二面角等。
另外,需要掌握棱錐,棱柱的性質(zhì),在棱錐中,著重掌握三棱錐,四棱錐,棱柱中,應該掌握三棱柱,長方體。空間直線與平面的位置關系應以證明垂直為重點,當然?疾斓姆椒殚g接證明。
專題5:解析幾何
直線與圓錐曲線的位置關系,動點軌跡的探討,求定值,定點,最值這些為近年來考的熱點問題。解析幾何是考生所公認的難點,它的難點不是對題目無思路,不是不知道如何化解所給已知條件,難點在于如何巧妙地破解已知條件,如何巧妙地將復雜的運算量進行化簡。當然這里邊包含了一些常用方法,常用技巧,需要學生去記憶,體會。
專題6:概率統(tǒng)計,算法,復數(shù)
算發(fā)與復數(shù)一般會出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計問題著重考察學生的閱讀能力和獲取信息的能力,與實際生活關系密切,學生需學會能有效得提取信息,翻譯信息。做到這一點時,題目也就不攻自破了。
專題7:極坐標與參數(shù)方程、不等式選講
這部分所考察的題目比較簡單,主要出現(xiàn)在選做題中,學生需要熟記公式。