新高三理科生高考各科成功復(fù)習方法總結(jié)(2)
2011-08-10 13:36:32新浪博客
【數(shù)學的學習】
數(shù)學的考察主要還是基礎(chǔ)知識,難題也不過是在簡單題的基礎(chǔ)上加以綜合。所以課本上的內(nèi)容是很重要的,如果課本上的知識都不能掌握,就沒有觸類旁通的資本。
對課本上的內(nèi)容,上課之前最好能夠首先預(yù)習一下,否則上課時有一個知識點沒有跟上老師的步驟,下面的就不知所以然了,如此惡性循環(huán),就會開始厭煩數(shù)學,對學習來說興趣是很重要的。課后針對性的練習題一定要認真做,不能偷懶,也可以在課后復(fù)習時把課堂例題反復(fù)演算幾遍,畢竟上課的時候,是老師在進行題目的演算和講解,學生在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在課堂上聽懂了,但實際上你對于解題方法的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點。“好腦子不如賴筆頭”。對于數(shù)理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經(jīng)過周密的筆頭計算才能夠發(fā)現(xiàn)其中的難點并且掌握化解方法,最終得到正確的計算結(jié)果。
其次是要善于總結(jié)歸類,尋找不同的題型、不同的知識點之間的共性和聯(lián)系,把學過的知識系統(tǒng)化。舉個具體的例子:高一代數(shù)的函數(shù)部分,我們學習了指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等好幾種不同類型的函數(shù)。但是把它們對比著總結(jié)一下,你就會發(fā)現(xiàn)無論哪種函數(shù),我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數(shù)的上述內(nèi)容制作在一張大表格中,對比著進行理解和記憶。在解題時注意函數(shù)表達式與圖形結(jié)合使用,必定會收到好得多的效果。
最后就是要加強課后練習,除了作業(yè)之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應(yīng)用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。