高三數(shù)學教案:三角函數(shù)七
來源:網(wǎng)絡整理 2024-12-08 20:57:58
高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。
一、教學內(nèi)容:三角函數(shù)
【結(jié)構】
二、要求
。ㄒ唬├斫馊我饨堑母拍、弧度的意義、正確進行弧度與角度的換算;掌握任意角三角函數(shù)的定義、會利用單位圓中的三角函數(shù)線表示正弦、余弦、正切。
。ǘ┱莆杖呛瘮(shù)公式的運用(即同角三角函數(shù)基本關系、誘導公式、和差及倍角公式)
。ㄈ┠苷_運用三角公式進行簡單三角函數(shù)式的化簡、求值和恒等式證明。
。ㄋ模⿻脝挝粓A中的三角函數(shù)線畫出正弦函數(shù)、正切函數(shù)的圖線、并在此基礎上由誘導公式畫出余弦函數(shù)的圖象、會用“五點法”畫出正弦函數(shù)、余弦函數(shù)及Y=Asin(ωx φ)的簡圖、理解A、ω、 < 1271864542"> 的意義。
三、熱點分析
1. 近幾年高考對三角變換的考查要求有所降低,而對本章的內(nèi)容的考查有逐步加強的趨勢,主要表現(xiàn)在對三角函數(shù)的圖象與性質(zhì)的考查上有所加強.
2. 對本章內(nèi)容一般以選擇、填空題形式進行考查,且難度不大,從20xx年至20xx年考查的內(nèi)容看,大致可分為四類問題
。1)與三角函數(shù)單調(diào)性有關的問題;
。2)與三角函數(shù)圖象有關的問題;
。3)應用同角變換和誘導公式,求三角函數(shù)值及化簡和等式證明的問題;
(4)與周期有關的問題
3. 基本的解題規(guī)律為:觀察差異(或角,或函數(shù),或運算),尋找聯(lián)系(借助于熟知的公式、或技巧),分析綜合(由因?qū)Ч驁?zhí)果索因),實現(xiàn)轉(zhuǎn)化.解題規(guī)律:在三角函數(shù)求值問題中的解題思路,一般是運用基本公式,將未知角變換為已知角求解;在最值問題和周期問題中,解題思路是合理運用基本公式將表達式轉(zhuǎn)化為由一個三角函數(shù)表達的形式求解.
4. 立足課本、抓好基礎.從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復雜三角變換和特殊技巧的考查,而重點轉(zhuǎn)移到對三角函數(shù)的圖象與性質(zhì)的考查,對基礎知識和基本技能的考查上來,所以在中首先要打好基礎.在考查利用三角公式進行恒等變形的同時,也直接考查了三角函數(shù)的性質(zhì)及圖象的變換,可見高考在降低對三角函數(shù)恒等變形的要求下,加強了對三角函數(shù)性質(zhì)和圖象的考查力度.
四、復習建議
本章內(nèi)容由于公式多,且習題變換靈活等特點,建議同學們復習本章時應注意以下幾點:
(1)首先對現(xiàn)有公式自己推導一遍,通過公式推導了解它們的內(nèi)在聯(lián)系從而培養(yǎng)邏輯推理。
。2)對公式要抓住其特點進行。有的公式運用一些順口溜進行。
。3)三角函數(shù)是階段研究的'一類初等函數(shù)。故對三角函數(shù)的性質(zhì)研究應結(jié)合一般函數(shù)研究方法進行對比。如定義域、值域、奇偶性、周期性、圖象變換等。通過與函數(shù)這一章的對比,加深對函數(shù)性質(zhì)的理解。但又要注意其個性特點,如周期性,通過對三角函數(shù)周期性的復習,類比到一般函數(shù)的周期性,再結(jié)合函數(shù)特點的研究類比到抽象函數(shù),形成解決問題的能力。
。4)由于三角函數(shù)是我們研究的一門基礎工具,近幾年高考往往考查知識網(wǎng)絡交匯處的知識,故學習本章時應注意本章知識與其它章節(jié)知識的聯(lián)系。如平面向量、參數(shù)方程、換元法、解三角形等。(20xx年高考應用題源于此)
。5)重視數(shù)學思想方法的復習,如前所述本章都以選擇、填空題形式出現(xiàn),因此復習中要重視選擇、填空題的一些特殊解題方法,如數(shù)形結(jié)合法、代入檢驗法、特殊值法,待定系數(shù)法、排除法等.另外對有些具體問題還需要掌握和運用一些基本結(jié)論.如:關于對稱問題,要利用y=sinx的對稱軸為x=kπ+ (k∈Z),對稱中心為(kπ,0),(k∈Z)等基本結(jié)論解決問題,同時還要注意對稱軸與函數(shù)圖象的交點的縱坐標特征.在求三角函數(shù)值的問題中,要學會用勾股數(shù)解題的方法,因為高題一般不能查表,給出的數(shù)都較特殊,因此主動發(fā)現(xiàn)和運用勾股數(shù)來解題能起到事半功倍的效果.
。6)加強三角函數(shù)應用意識的訓練,1999年高考理科第20題實質(zhì)是一個三角問題,由于考生對三角函數(shù)的概念認識膚淺,不能將以角為自變量的函數(shù)迅速與三角函數(shù)之間建立聯(lián)系,造成障礙,思路受阻.實際上,三角函數(shù)是以角為自變量的函數(shù),也是以實數(shù)為自變量的函數(shù),它產(chǎn)生于生產(chǎn)實踐,是客觀實際的抽象,同時又廣泛地應用于客觀實際,故應培養(yǎng)實踐第一的觀點.總之,三角部分的考查保持了內(nèi)容穩(wěn)定,難度穩(wěn)定,題量穩(wěn)定,題型穩(wěn)定,考查的重點是三角函數(shù)的概念、性質(zhì)和圖象,三角函數(shù)的求值問題以及三角變換的方法.
。7)變?yōu)橹骶、抓好訓練.變是本章的主題,在三角變換考查中,角的變換,三角函數(shù)名的變換,三角函數(shù)次數(shù)的變換,三角函數(shù)式表達形式的變換等比比皆是,在訓練中,強化“變”意識是關鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見問題的解法,把課本中習題進行歸類,并進行分析比較,尋找解題規(guī)律.針對高考中的題目看,還要強化變角訓練,經(jīng)常注意收集角間關系的觀察分析方法.另外如何把一個含有不同名或不同角的三角函數(shù)式化為只含有一個三角函數(shù)關系式的訓練也要加強,這也是高考的重點.同時應掌握三角函數(shù)與二次函數(shù)相結(jié)合的題目.
(8)在復習中,應立足基本公式,在解題時,注意在條件與結(jié)論之間建立聯(lián)系,在變形過程中不斷尋找差異,講究算理,才能立足基礎,發(fā)展能力,適應高考.
在本章內(nèi)容中,高考試題主要反映在以下三方面:其一是考查三角函數(shù)的性質(zhì)及圖象變換,尤其是三角函數(shù)的最大值與最小值、周期。多數(shù)題型為選擇題或填空題;其次是三角函數(shù)式的恒等變形。如運用三角公式進行化簡、求值解決簡單的綜合題等。除在填空題和選擇題出現(xiàn)外,解答題的中檔題也經(jīng)常出現(xiàn)這方面內(nèi)容。
另外,還要注意利用三角函數(shù)解決一些應用問題。
相關推薦:
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號
相關推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢