Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高二數(shù)學復習方法 > 高二數(shù)學不等式的知識點有哪些

高二數(shù)學不等式的知識點有哪些

2024-09-11 08:35:26網(wǎng)絡整理


高考

  不等式

  不等式這部分知識,滲透在中學數(shù)學各個分支中,有著十分廣泛的應用。因此不等式應用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據(jù)題設與結論的結構特點、內在聯(lián)系、選擇適當?shù)慕鉀Q方案,最終歸結為不等式的求解或證明。不等式的應用范圍十分廣泛,它始終貫串在整個中學數(shù)學之中。諸如集合問題,方程(組)的解的討論,函數(shù)單調性的研究,函數(shù)定義域的確定,三角、數(shù)列、復數(shù)、立體幾何、解析幾何中的最大值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結為不等式的求解或證明。

  知識整合

  1。解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù)、數(shù)形結合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數(shù)的不等式,運用圖解法可以使得分類標準明晰。

  2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數(shù)的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結合是解不等式的常用方法。方程的根、函數(shù)的性質和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉化和相互變用。

  3。在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù),將不等式的解化歸為直觀、形象的圖象關系,對含有參數(shù)的不等式,運用圖解法,可以使分類標準更加明晰。

  4。證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設、題斷的結構特點、內在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

 相關推薦:

       高二數(shù)學復習方法匯總

 

最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等

高考時間線的全部重要節(jié)點

盡在"高考網(wǎng)"微信公眾號

[標簽:高二數(shù)學 復習方法]

分享:

高考院校庫(挑大學·選專業(yè),一步到位。

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

  • 歡迎掃描二維碼
    關注高考網(wǎng)微信
    ID:gaokao_com

  • 高考


高考關鍵詞