高一學(xué)習(xí)數(shù)學(xué)的解題方法
2024-09-03 18:52:04網(wǎng)絡(luò)整理
高一數(shù)學(xué)解題的思維過程
數(shù)學(xué)解題的思維過程是指從理解問題開始,經(jīng)過探索思路,轉(zhuǎn)換問題直至解決問題,進行回顧的全過程的思維活動。
對于數(shù)學(xué)解題思維過程,G . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計劃、實現(xiàn)計劃和回顧。這四個階段思維過程的實質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實施、反思。
第一階段:理解問題是解題思維活動的開始。
第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。
第三階段:計劃實施是解決問題過程的實現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運用和思維過程的具體表達,是解題思維活動的重要組成部分。
第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的開始。
高一數(shù)學(xué)解題方法
一、 熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
、相關(guān)推薦:
最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報、錄取分?jǐn)?shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號