2020高考第一輪復習:高中數(shù)學21種解題方法與技巧
2020-02-21 18:05:51高考網整理
2020高考即將開戰(zhàn),你準備好了嗎?高考網小編為各位考生整理了一些高考復習方法,供大家參考閱讀!
1、解決絕對值問題
主要包括化簡、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。具體轉化方法有:
①分類討論法:根據(jù)絕對值符號中的數(shù)或式子的正、零、負分情況去掉絕對值。
、诹泓c分段討論法:適用于含一個字母的多個絕對值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2、因式分解
根據(jù)項數(shù)選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式
選擇用公式
十字相乘法
分組分解法
拆項添項法
3、配方法
利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數(shù)學中的重要方法和技巧。配方法的主要根據(jù)有:
4、換元法
解某些復雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:
設元→換元→解元→還元
5、待定系數(shù)法
待定系數(shù)法是在已知對象形式的條件下求對象的一種方法。適用于求點的坐標、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:
、僭O ②列 ③解 ④寫
6、復雜代數(shù)等式
復雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。
①因式分解型:
(-----)(----)=0 兩種情況為或型
、谂涑善椒叫停
(----)2+(----)2=0 兩種情況為且型
7、數(shù)學中兩個最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
8、化簡二次根式
基本思路是:把√m化成完全平方式。即:
9、觀察法
10、代數(shù)式求值
方法有:
(1)直接代入法
(2)化簡代入法
(3)適當變形法(和積代入法)
注意:當求值的代數(shù)式是字母的“對稱式”時,通?梢曰癁樽帜“和與積”的形式,從而用“和積代入法”求值。
11、解含參方程
方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據(jù)需要討論
(3)分類寫出結論
12、恒相等成立的有用條件
(1)ax+b=0對于任意x都成立關于x的方程ax+b=0有無數(shù)個解a=0且b=0。
(2)ax2+bx+c=0對于任意x都成立關于x的方程ax2+bx+c=0有無數(shù)解a=0、b=0、c=0。
13、恒不等成立的條件
由一元二次不等式解集為R的有關結論容易得到下列恒不等成立的條件:
14、平移規(guī)律
圖像的平移規(guī)律是研究復雜函數(shù)的重要方法。平移規(guī)律是:
15、圖像法
討論函數(shù)性質的重要方法是圖像法——看圖像、得性質。
定義域 圖像在X軸上對應的部分
值 域 圖像在Y軸上對應的部分
單調性
從左向右看,連續(xù)上升的一段在X軸上對應的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對應的區(qū)間是減區(qū)間。
最 值 圖像最高點處有最大值,圖像最低點處有最小值
奇偶性 關于Y軸對稱是偶函數(shù),關于原點對稱是奇函數(shù)
16、函數(shù)、方程、不等式簡的重要關系
方程的根
函數(shù)圖像與x軸交點橫坐標
不等式解集端點
17、一元二次方程的解法
一元二次不等式可以用因式分解轉化為二元一次不等式組去解,但比較復雜;它的簡便的實用解法是根據(jù)“三個二次”間的關系,利用二次函數(shù)的圖像去解。具體步驟如下:
二次化為正
判別且求根
畫出示意圖
解集橫軸中
18、一元二次方程根的討論
一元二次方程根的符號問題或m型問題可以利用根的判別式和根與系數(shù)的關系來解決,但根的一般問題、特別是區(qū)間根的問題要根據(jù)“三個二次”間的關系,利用二次函數(shù)的圖像來解決。“圖像法”解決一元二次方程根的問題的一般思路是:
題意
二次函數(shù)圖像
不等式組
不等式組包括:a的符號;△的情況;對稱軸的位置;區(qū)間端點函數(shù)值的符號。
19、基本函數(shù)在區(qū)間上的值域
我們學過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù);竞瘮(shù)求值域或最值有兩種情況:
(1)定義域沒有特別限制時---記憶法或結論法;
(2)定義域有特別限制時---圖像截斷法,一般思路是:
畫出圖像——截出一斷——得出結論
20、最值型應用題的解法
應用題中,涉及“一個變量取什么值時另一個變量取得最大值或最小值”的問題是最值型應用題。解決最值型應用題的基本思路是函數(shù)思想法,其解題步驟是:
設變量——列函數(shù)——求最值——寫結論
21、穿線法
穿線法是解高次不等式和分式不等式的最好方法。其一般思路是:
首項化正——求根標根——右上起穿——奇穿偶回
注意:①高次不等式首先要用移項和因式分解的方法化為“左邊乘積、右邊是零”的形式。②分式不等式一般不能用兩邊都乘去分母的方法來解,要通過移項、通分合并、因式分解的方法化為“商零式”,用穿線法解。
最新高考資訊、高考政策、考前準備、高考預測、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網"微信公眾號