2020高三復(fù)習(xí)策略:高考數(shù)學(xué)最易失分知識(shí)點(diǎn)全梳理(2)
2020-02-21 17:52:17高考網(wǎng)整理
11、忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長(zhǎng)度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。
12、向量夾角范圍不清致誤
解題時(shí)要全面考慮問(wèn)題.數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。
13、忽視零截距
解決有關(guān)直線的截距問(wèn)題時(shí)應(yīng)注意兩點(diǎn):一是求解時(shí)一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫(xiě)成截距式。因此解決這類(lèi)問(wèn)題時(shí)要進(jìn)行分類(lèi)討論,不要漏掉截距為零時(shí)的情況。
14、忽視圓錐曲線定義中條件致誤
利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點(diǎn)是缺一不可的:其一,絕對(duì)值;其二,2a<|F1F2|。
如果不滿(mǎn)足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支。
15、誤判直線與圓錐曲線位置關(guān)系
過(guò)定點(diǎn)的直線與雙曲線的位置關(guān)系問(wèn)題,基本的解決思路有兩個(gè):一是利用一元二次方程的判別式來(lái)確定,但一定要注意,利用判別式的前提是二次項(xiàng)系數(shù)不為零,當(dāng)二次項(xiàng)系數(shù)為零時(shí),直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個(gè)交點(diǎn);
二是利用數(shù)形結(jié)合的思想,畫(huà)出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關(guān)系。在直線與圓錐曲線的位置關(guān)系中,拋物線和雙曲線都有特殊情況,在解題時(shí)要注意,不要忘記其特殊性。
16、兩個(gè)計(jì)數(shù)原理不清致誤
分步加法計(jì)數(shù)原理與分類(lèi)乘法計(jì)數(shù)原理是解決排列組合問(wèn)題最基本的原理,故理解“分類(lèi)用加、分步用乘”是解決排列組合問(wèn)題的前提,在解題時(shí),要分析計(jì)數(shù)對(duì)象的本質(zhì)特征與形成過(guò)程,按照事件的結(jié)果來(lái)分類(lèi),按照事件的發(fā)生過(guò)程來(lái)分步,然后應(yīng)用兩個(gè)基本原理解決.
對(duì)于較復(fù)雜的問(wèn)題既要用到分類(lèi)加法計(jì)數(shù)原理,又要用到分步乘法計(jì)數(shù)原理,一般是先分類(lèi),每一類(lèi)中再分步,注意分類(lèi)、分步時(shí)要不重復(fù)、不遺漏,對(duì)于“至少、至多”型問(wèn)題除了可以用分類(lèi)方法處理外,還可以用間接法處理。
17、排列、組合不分致誤
為了簡(jiǎn)化問(wèn)題和表達(dá)方便,解題時(shí)應(yīng)將具有實(shí)際意義的排列組合問(wèn)題符號(hào)化、數(shù)學(xué)化,建立適當(dāng)?shù)哪P,再?yīng)用相關(guān)知識(shí)解決.
建立模型的關(guān)鍵是判斷所求問(wèn)題是排列問(wèn)題還是組合問(wèn)題,其依據(jù)主要是看元素的組成有沒(méi)有順序性,有順序性的是排列問(wèn)題,無(wú)順序性的是組合問(wèn)題。
18、混淆項(xiàng)系數(shù)與二項(xiàng)式系數(shù)致誤
在二項(xiàng)式(a+b)n的展開(kāi)式中,其通項(xiàng)Tr+1=Crnan-rbr是指展開(kāi)式的第r+1項(xiàng),因此展開(kāi)式中第1,2,3,…,n項(xiàng)的二項(xiàng)式系數(shù)分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項(xiàng)的系數(shù)是二項(xiàng)式系數(shù)與其他數(shù)字因數(shù)的積。
19、循環(huán)結(jié)束判斷不準(zhǔn)致誤
控制循環(huán)結(jié)構(gòu)的是計(jì)數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件.在解答這類(lèi)題目時(shí)首先要弄清楚這兩個(gè)變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個(gè)條件由輸出要求所決定,看清楚是滿(mǎn)足條件時(shí)結(jié)束還是不滿(mǎn)足條件時(shí)結(jié)束。
20、條件結(jié)構(gòu)對(duì)條件判斷不準(zhǔn)致誤
條件結(jié)構(gòu)的程序框圖中對(duì)判斷條件的分類(lèi)是逐級(jí)進(jìn)行的,其中沒(méi)有遺漏也沒(méi)有重復(fù),在解題時(shí)對(duì)判斷條件要仔細(xì)辨別,看清楚條件和函數(shù)的對(duì)應(yīng)關(guān)系,對(duì)條件中的數(shù)值不要漏掉也不要重復(fù)了端點(diǎn)值。
21、復(fù)數(shù)的概念不清致誤
對(duì)于復(fù)數(shù)a+bi(a,b∈R),a叫做實(shí)部,b叫做虛部;當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a,b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù)。
解決復(fù)數(shù)概念類(lèi)試題要仔細(xì)區(qū)分以上概念差別,防止出錯(cuò).另外,i2=-1是實(shí)現(xiàn)實(shí)數(shù)與虛數(shù)互化的橋梁,要適時(shí)進(jìn)行轉(zhuǎn)化,解題時(shí)極易丟掉“-”而出錯(cuò)。
最新高考資訊、高考政策、考前準(zhǔn)備、高考預(yù)測(cè)、志愿填報(bào)、錄取分?jǐn)?shù)線等
高考時(shí)間線的全部重要節(jié)點(diǎn)
盡在"高考網(wǎng)"微信公眾號(hào)