高二數(shù)學(xué)復(fù)習(xí)方法:高二數(shù)學(xué)公式總結(jié)
2019-04-22 16:07:13網(wǎng)絡(luò)資源
向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根號(hào)(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
=————————————————————
根號(hào)(x1平方+y1平方)*根號(hào)(x2平方+y2平方)
5.空間向量:同上推論
。ㄌ崾荆合蛄縜={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
三角函數(shù)公式:
1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]