全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高一數學學習方法 > 高一數學學習方法:數學學習有妙法

高一數學學習方法:數學學習有妙法

2019-04-12 18:32:48網絡資源

  往往有同學進入高中以后不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。為什么會這樣呢?讓我們先看看高中數學和初中數學有些什么樣的轉變吧。

  一、高中數學的特點

  1、 理論加強

  2、 課程增多

  3、 難度增大

  4、 要求提高

  二、掌握數學思想


  高中數學從學習方法和思想方法上更接近于高等數學。學好它,需要我們從方法論的高度來掌握它。我們在研究數學問題時要經常運用唯物辯證的思想去解決數學問題。數學思想,實質上就是唯物辯證法在數學中的運用的反映。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,初步公理化思想,數形結合思想,運動思想,轉化思想,變換思想。

  例如,數列、一次函數、解析幾何中的直線幾個概念都可以用函數(特殊的對應)的概念來統(tǒng)一。又比如,數、方程、不等式、數列幾個概念也都可以統(tǒng)一到函數概念。

  再看看下面這個運用矛盾的觀點來解題的例子。

  已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。

  分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。

  x=(x0+2)/2

  y=y0/2

  顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。

  數學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什么途徑?就是在數學思想方法的指導下的普遍性問題。

  有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數學學習進入更高的層次,會為今后進入大學深造帶來很有麻煩。

  在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

  要打贏一場戰(zhàn)役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰(zhàn)術和策略問題。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。

  中學數學中經常用到的數學思維策略有:以簡馭繁、數形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔。

  如果有了正確的數學思想方法,采取了恰當的數學思維策略,又有了豐富的經驗和扎實的基本功,一定可以學好高中數學。

  三、學習方法的改進

  身處應試教育的怪圈,每個教師和學生都不由自主地陷入題海之中,教師拍心某種題型沒講,高考時做不出,學生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學習方法的培養(yǎng),每個學生都有自己的方法,但什么樣的學習方法才是正確的方法呢?是不是一定要博覽群題才能提高水平呢?

  現實告訴我們,大膽改進學習方法,這是一個非常重大的問題。

 。ㄒ唬⿲W會聽、讀

  我們每天在學校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對不對呢?

  讓我們從聽(聽講、課堂學習)和讀(閱讀課本和相關資料)兩方面來談談吧。

  學生學習的知識,往往是間接的知識,是抽象化、形式化的知識,這些知識是在前人探索和實踐的基礎上提煉出來的,一般不包含探索和思維的過程。因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內容是什么?怎么分析?理由是什么?采用什么方法?還有什么疑問?只有這樣,才可能對教學內容有所理解。

  聽講的過程不是一個被動參預的過程,在聽講的前提下,還要展開來分析:這里用了什么思想方法,這樣做的目的是什么?為什么老師就能想到最簡捷的方法?這個題有沒有更直接的方法?

  學而不思則罔,思而不學則殆,在聽講的過程中一定要有積極的思考和參預,這樣才能達到最高的學習效率。

  閱讀數學教材也是掌握數學知識的非常重要的方法。只有真正閱讀和數學教材,才能較好地掌握數學語言,提高自學能力。一定要改變只做題不看書,把課本當成查公式的辭典的不良傾向。閱讀課本,也要爭取老師的指導。閱讀當天的內容或一個單元一章的內容,都要通盤考慮,要有目標。

  比如,學習反正弦函數,從知識上來講,通過閱讀,應弄請以下幾個問題:

  (1)是不是每個函數都有反函數,如果不是,在什么情況下函數有反函數?

 。2)正弦函數在什么情況下有反函數?若有,其反函數如何表示?

 。3)正弦函數的圖象與反正弦函數的圖象是什么關系?

 。4)反正弦函數有什么性質?

 。5)如何求反正弦函數的值?

 。ǘ⿲W會思考

  1、善于發(fā)現問題和提出問題

  2、善于反思與反求

[標簽:高一數學 學習方法]

分享:

高考院校庫(挑大學·選專業(yè),一步到位。

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數線

專業(yè)分數線

  • 歡迎掃描二維碼
    關注高考網微信
    ID:gaokao_com

  • 👇掃描免費領
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關注高考網官方服務號