全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高一數(shù)學學習方法 > 高一數(shù)學學習方法:三角函數(shù)常見問題十種求解策略

高一數(shù)學學習方法:三角函數(shù)常見問題十種求解策略

2019-04-12 15:20:59網(wǎng)絡資源

  一、見“給角求值”問題,運用“新興”誘導公式

  一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.

  1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);

  3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).

  二、見“sinα±cosα”問題,運用三角“八卦圖”

  1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

  2.sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

  4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi).

  三、見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

  四、“見齊思弦”=>“化弦為一”

  已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.

  五、見“正弦值或角的平方差”形式,啟用“平方差”公式:

  1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.

[標簽:高一數(shù)學 學習方法 三角函數(shù)]

分享:

高考院校庫(挑大學·選專業(yè),一步到位。

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數(shù)線

專業(yè)分數(shù)線

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務號