中國古代數(shù)學的發(fā)展
來源:網(wǎng)絡來源 2009-08-30 12:27:17
魏、晉時期出現(xiàn)的玄學,不為漢儒經(jīng)學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利于數(shù)學從理論上加以提高。吳國趙爽注《周髀算經(jīng)》,漢末魏初徐岳撰《九章算術(shù)》注,魏末晉初劉徽撰《九章算術(shù)》注、《九章重差圖》都是出現(xiàn)在這個時期。趙爽與劉徽的工作為中國古代數(shù)學體系奠定了理論基礎。
趙爽是中國古代對數(shù)學定理和公式進行證明與推導的最早的數(shù)學家之一。他在《周髀算經(jīng)》書中補充的“勾股圓方圖及注”和“日高圖及注”是十分重要的數(shù)學文獻。在“勾股圓方圖及注”中他提出用弦圖證明勾股定理和解勾股形的五個公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創(chuàng)性的,在中國古代數(shù)學發(fā)展中占有重要地位。
劉徽約與趙爽同時,他繼承和發(fā)展了戰(zhàn)國時期名家和墨家的思想,主張對一些數(shù)學名詞特別是重要的數(shù)學概念給以嚴格的定義,認為對數(shù)學知識必須進行“析理”,才能使數(shù)學著作簡明嚴密,利于讀者。他的《九章算術(shù)》注不僅是對《九章算術(shù)》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發(fā)展。劉徽創(chuàng)造割圓術(shù),利用極限的思想證明圓的面積公式,并首次用理論的方法算得圓周率為157/50和3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恒為2:1,解決了一般立體體積的關(guān)鍵問題。在證明方錐、圓柱、圓錐、圓臺的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以后,中國長期處于戰(zhàn)爭和南北分裂的狀態(tài)。祖沖之父子的工作就是經(jīng)濟文化南移以后,南方數(shù)學發(fā)展的具有代表性的工作,他們在劉徽注《九章算術(shù)》的基礎上,把傳統(tǒng)數(shù)學大大向前推進了一步。他們的數(shù)學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恒)原理;提出二次與三次方程的解法等。
據(jù)推測,祖沖之在劉徽割圓術(shù)的基礎上,算出圓內(nèi)接正6144邊形和正12288邊形的面積,從而得到了這個結(jié)果。他又用新的方法得到圓周率兩個分數(shù)值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖(日恒)總結(jié)了劉徽的有關(guān)工作,提出“冪勢既同則積不容異”,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恒)公理。祖(日恒)應用這個公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數(shù)學的發(fā)展。唐初王孝通的《緝古算經(jīng)》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數(shù)學的情況。王孝通在不用數(shù)學符號的情況下,立出數(shù)字三次方程,不僅解決了當時社會的需要,也為后來天元術(shù)的建立打下基礎。此外,對傳統(tǒng)的勾股形解法,王孝通也是用數(shù)字三次方程解決的。
唐初封建統(tǒng)治者繼承隋制,656年在國子監(jiān)設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經(jīng)十書》,作為算學館學生用的課本,明算科考試亦以這些算書為準。李淳風等編纂的《算經(jīng)十書》,對保存數(shù)學經(jīng)典著作、為數(shù)學研究提供文獻資料方面是很有意義的。他們給《周髀算經(jīng)》、《九章算術(shù)》以及《海島算經(jīng)》所作的注解,對讀者是有幫助的。隋唐時期,由于歷法的需要,天算學家創(chuàng)立了二次函數(shù)的內(nèi)插法,豐富了中國古代數(shù)學的內(nèi)容。
算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優(yōu)點,但也存在布籌占用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術(shù)上是重要的改革。尤其是“珠算”,它繼承了籌算五升十進與位值制的優(yōu)點,又克服了籌算縱橫記數(shù)與置籌不便的缺點,優(yōu)越性十分明顯。但由于當時乘除算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
唐中期以后,商業(yè)繁榮,數(shù)字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次算法改革主要是簡化乘、除算法,唐代的算法改革使乘除法可以在一個橫列中進行運算,它既適用于籌算,也適用于珠算。
相關(guān)推薦
高考院校庫(挑大學·選專業(yè),一步到位。
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢